京东笔试0315
分析
比较最大元素-第二小元素和第二大元素-最小元素,取较小值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| import java.util.*;
public class Main { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); for (int t = 0; t < T; t++) { int n = sc.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = sc.nextInt(); } Arrays.sort(nums); int x = nums[n-1] - nums[1]; int y = nums[n-2] - nums[0]; System.out.println(Math.min(x, y)); } } }
|
- 时间复杂度:O(nlogn)
- 空间复杂度:O(n)
找规律
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| import java.util.*;
public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); double r = sc.nextDouble(); int n = sc.nextInt(); double total = Math.PI * r * r * 3 / 4; for (int i = 2; i <= n; ++i) { r = r / 2; double m = Math.PI * r * r; if (i % 2 == 0) { total -= m * 3 / 4; } else { total += m * 3 / 4; } } System.out.printf("%.2f\n", total); } }
|
最短路径
Dijkstra 算法的核心:
- 初始化:起始节点的最短路径设为 0,其他节点设为 INF。
- 处理优先队列:每次从队列中取出当前最短路径的节点,并更新它的邻接节点的最短路径。如果通过当前节点的路径更短,就
- 新邻接节点的最短路径并将它加入队列。
- 终止条件:当队列为空时,表示所有可达节点的最短路径已计算完成。
图的构建:
- 输入读取:读取节点和边的信息,构建图的邻接列表。
- 特殊节点的处理:将每个特殊节点与新节点 n 连接,边的权重为 0,确保从特殊节点到新节点的路径是“可达的”。
查询处理:
- 对于每个查询,直接输出从新节点 n 到目标节点的最短路径。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
| import java.util.*;
public class Main { static final long INF = Long.MAX_VALUE; public static void main (String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int q = sc.nextInt(); List<Integer> stations = new ArrayList<>(); for (int i = 0; i < k; i++) { stations.add(sc.nextInt()); } n++; List<List<Pair>> graph = new ArrayList<>(n + 1); for (int i = 0; i <= n; i++) { graph.add(new ArrayList<>()); } for (int i = 0; i < m; i++) { int a = sc.nextInt(); int b = sc.nextInt(); int c = sc.nextInt(); graph.get(a).add(new Pair(c, b)); graph.get(b).add(new Pair(c, a)); } for (int sn : stations) { graph.get(sn).add(new Pair(0, n)); graph.get(n).add(new Pair(0, sn)); } long[] distances = dijkstra(graph, n, n);
for (int i = 0; i < q; i++) { int target = sc.nextInt(); System.out.println(distances[target]); }
sc.close(); } public static long[] dijkstra(List<List<Pair>> graph, int n, int start) { long[] dist = new long[n + 1]; Arrays.fill(dist, INF); dist[start] = 0; boolean[] visited = new boolean[n + 1]; PriorityQueue<Pair> pq = new PriorityQueue<>(Comparator.comparingLong(pair -> pair.dist)); pq.offer(new Pair(0, start)); while (!pq.isEmpty()){ Pair cur = pq.poll(); int u = cur.node; long curDist = cur.dist; if (visited[u]) { continue; } visited[u] = true; for (Pair neighbor : graph.get(u)) { int v = neighbor.node; long weight = neighbor.dist; if (dist[u] + weight < dist[v]) { dist[v] = dist[u] + weight; pq.offer(new Pair(dist[v], v)); } } } return dist; } static class Pair { long dist; int node; Pair(long dist, int node) { this.dist = dist; this.node = node; } } }
|
- 时间复杂度:O(E log V)
- 空间复杂度:O(n + m + k)
总结
京东的题目不是很难,但要完全写对也不容易,之后要找迪杰斯特拉的题目再练练。